NumPy is Pythonβs go-to library for numerical computing , especially with large datasets and arrays. Its math functions are vectorized, which means you can apply operations to entire arrays without loops β making them fast and powerful.
Why Use NumPy for Math?
Element-wise operations on arrays
Handles multi-dimensional data
Functions are vectorized (fast & efficient)
Seamless with machine learning , data analysis , and scientific computing
π¦ Importing NumPy
import numpy as np
Enter fullscreen mode
Exit fullscreen mode
Note:
The following are the most-used functions only, checkout the complete list on numpy.org .
π’ Arithmetic Functions
Function
Description
np.add(x1, x2)
Element-wise addition
np.subtract(x1, x2)
Element-wise subtraction
np.multiply(x1, x2)
Element-wise multiplication
np.divide(x1, x2)
Element-wise division
np.power(x1, x2)
x1 raised to the power of x2
np.mod(x1, x2)
Element-wise modulo
π Trigonometric Functions
Function
Description
np.sin(x)
Sine
np.cos(x)
Cosine
np.tan(x)
Tangent
np.arcsin(x)
Inverse sine
np.arccos(x)
Inverse cosine
np.arctan(x)
Inverse tangent
np.arctan2(y, x)
Arctangent of y/x
np.hypot(x, y)
β(xΒ² + yΒ²)
np.degrees(x)
Radians β degrees
np.radians(x)
Degrees β radians
π Exponentials & Logarithms
Function
Description
np.exp(x)
e ** x
np.expm1(x)
e ** x - 1
np.log(x)
Natural log (base e)
np.log2(x)
Base-2 logarithm
np.log10(x)
Base-10 logarithm
np.log1p(x)
log(1 + x) (accurate for small x)
π§ Rounding, Absolute, and Sign Functions
Function
Description
np.round(x)
Round to nearest integer
np.floor(x)
Round down
np.ceil(x)
Round up
np.trunc(x)
Truncate decimal
np.abs(x)
Absolute value
np.sign(x)
Sign of x (-1, 0, or 1)
π Aggregates & Reductions
Function
Description
np.sum(x)
Sum of all elements
np.prod(x)
Product of all elements
np.mean(x)
Average value
np.std(x)
Standard deviation
np.var(x)
Variance
np.max(x)
Maximum value
np.min(x)
Minimum value
π Comparisons & Logical Checks
Function
Description
np.isfinite(x)
Finite check
np.isinf(x)
Infinite check
np.isnan(x)
NaN check
np.isclose(x1, x2)
Check if values are close
np.equal(x1, x2)
Element-wise equality
π Linear Algebra (Bonus)
Function
Description
np.dot(x1, x2)
Dot product
np.matmul(x1, x2)
Matrix multiplication
np.linalg.inv(x)
Inverse of a matrix
np.linalg.det(x)
Determinant
np.linalg.eig(x)
Eigenvalues and eigenvectors
π‘ Constants
Constant
Description
np.pi
Ο
np.e
Eulerβs number
np.inf
Infinity
np.nan
Not a number
βοΈ Practical NumPy Example
You can run it and see the output online here: pythononline.net/#qBOCl4
import numpy as np
arr = np . array ([ 1 , 2 , 3 , 4 ])
arr2 = np . array ([ 4 , 3 , 2 , 1 ])
# Arithmetic
print ( " Add: " , np . add ( arr , arr2 ))
print ( " Subtract: " , np . subtract ( arr , arr2 ))
print ( " Multiply: " , np . multiply ( arr , arr2 ))
print ( " Divide: " , np . divide ( arr , arr2 ))
print ( " Power: " , np . power ( arr , 2 ))
print ( " Mod: " , np . mod ( arr , 3 ))
# Trigonometry
print ( " sin(pi/2): " , np . sin ( np . pi / 2 ))
print ( " cos(0): " , np . cos ( 0 ))
print ( " tan(pi/4): " , np . tan ( np . pi / 4 ))
print ( " arcsin(1): " , np . arcsin ( 1 ))
print ( " arccos(0): " , np . arccos ( 0 ))
print ( " arctan(1): " , np . arctan ( 1 ))
print ( " arctan2(1, 1): " , np . arctan2 ( 1 , 1 ))
print ( " hypot(3, 4): " , np . hypot ( 3 , 4 ))
print ( " degrees(pi): " , np . degrees ( np . pi ))
print ( " radians(180): " , np . radians ( 180 ))
# Exponentials & logs
print ( " exp(1): " , np . exp ( 1 ))
print ( " expm1(1e-5): " , np . expm1 ( 1e-5 ))
print ( " log(e): " , np . log ( np . e ))
print ( " log2(8): " , np . log2 ( 8 ))
print ( " log10(1000): " , np . log10 ( 1000 ))
print ( " log1p(1e-5): " , np . log1p ( 1e-5 ))
# Absolute, rounding
print ( " abs(-5): " , np . abs ( - 5 ))
print ( " sign(-3): " , np . sign ( - 3 ))
print ( " round(3.1415): " , np . round ( 3.1415 ))
print ( " floor(3.9): " , np . floor ( 3.9 ))
print ( " ceil(3.1): " , np . ceil ( 3.1 ))
print ( " trunc(3.8): " , np . trunc ( 3.8 ))
# Aggregates
print ( " sum: " , np . sum ( arr ))
print ( " prod: " , np . prod ( arr ))
print ( " mean: " , np . mean ( arr ))
print ( " std: " , np . std ( arr ))
print ( " var: " , np . var ( arr ))
print ( " max: " , np . max ( arr ))
print ( " min: " , np . min ( arr ))
# Comparisons
print ( " isfinite([1, np.inf]): " , np . isfinite ([ 1 , np . inf ]))
print ( " isinf([1, np.inf]): " , np . isinf ([ 1 , np . inf ]))
print ( " isnan([1, np.nan]): " , np . isnan ([ 1 , np . nan ]))
print ( " isclose(1.0, 1.00001): " , np . isclose ( 1.0 , 1.00001 ))
print ( " equal([1, 2], [1, 3]): " , np . equal ([ 1 , 2 ], [ 1 , 3 ]))
# Constants
print ( " pi: " , np . pi )
print ( " e: " , np . e )
print ( " inf: " , np . inf )
print ( " nan: " , np . nan )
Enter fullscreen mode
Exit fullscreen mode
NumPy offers a rich set of fast, vectorized math functions that go far beyond Pythonβs built-ins. Whether you're handling basic arithmetic, advanced trigonometry, or high-performance numerical computations, NumPy is an essential tool.
Keep this cheat sheet handy as a quick reference to power up your data science, machine learning, or scientific computing projects!
Top comments (0)