CodeNewbie Community 🌱

Cover image for πŸ“ NumPy Math Functions Cheat Sheet
Hichem MG
Hichem MG

Posted on

πŸ“ NumPy Math Functions Cheat Sheet

NumPy is Python’s go-to library for numerical computing, especially with large datasets and arrays. Its math functions are vectorized, which means you can apply operations to entire arrays without loops β€” making them fast and powerful.

Why Use NumPy for Math?

  • Element-wise operations on arrays
  • Handles multi-dimensional data
  • Functions are vectorized (fast & efficient)
  • Seamless with machine learning, data analysis, and scientific computing

πŸ“¦ Importing NumPy

import numpy as np
Enter fullscreen mode Exit fullscreen mode

Note:

The following are the most-used functions only, checkout the complete list on numpy.org.

πŸ”’ Arithmetic Functions

Function Description
np.add(x1, x2) Element-wise addition
np.subtract(x1, x2) Element-wise subtraction
np.multiply(x1, x2) Element-wise multiplication
np.divide(x1, x2) Element-wise division
np.power(x1, x2) x1 raised to the power of x2
np.mod(x1, x2) Element-wise modulo

πŸ“ Trigonometric Functions

Function Description
np.sin(x) Sine
np.cos(x) Cosine
np.tan(x) Tangent
np.arcsin(x) Inverse sine
np.arccos(x) Inverse cosine
np.arctan(x) Inverse tangent
np.arctan2(y, x) Arctangent of y/x
np.hypot(x, y) √(x² + y²)
np.degrees(x) Radians β†’ degrees
np.radians(x) Degrees β†’ radians

πŸ“Š Exponentials & Logarithms

Function Description
np.exp(x) e ** x
np.expm1(x) e ** x - 1
np.log(x) Natural log (base e)
np.log2(x) Base-2 logarithm
np.log10(x) Base-10 logarithm
np.log1p(x) log(1 + x) (accurate for small x)

🧠 Rounding, Absolute, and Sign Functions

Function Description
np.round(x) Round to nearest integer
np.floor(x) Round down
np.ceil(x) Round up
np.trunc(x) Truncate decimal
np.abs(x) Absolute value
np.sign(x) Sign of x (-1, 0, or 1)

πŸ“ Aggregates & Reductions

Function Description
np.sum(x) Sum of all elements
np.prod(x) Product of all elements
np.mean(x) Average value
np.std(x) Standard deviation
np.var(x) Variance
np.max(x) Maximum value
np.min(x) Minimum value

πŸ” Comparisons & Logical Checks

Function Description
np.isfinite(x) Finite check
np.isinf(x) Infinite check
np.isnan(x) NaN check
np.isclose(x1, x2) Check if values are close
np.equal(x1, x2) Element-wise equality

πŸ“ Linear Algebra (Bonus)

Function Description
np.dot(x1, x2) Dot product
np.matmul(x1, x2) Matrix multiplication
np.linalg.inv(x) Inverse of a matrix
np.linalg.det(x) Determinant
np.linalg.eig(x) Eigenvalues and eigenvectors

πŸ’‘ Constants

Constant Description
np.pi Ο€
np.e Euler’s number
np.inf Infinity
np.nan Not a number

βš™οΈ Practical NumPy Example

You can run it and see the output online here: pythononline.net/#qBOCl4

import numpy as np

arr = np.array([1, 2, 3, 4])
arr2 = np.array([4, 3, 2, 1])

# Arithmetic
print("Add:", np.add(arr, arr2))
print("Subtract:", np.subtract(arr, arr2))
print("Multiply:", np.multiply(arr, arr2))
print("Divide:", np.divide(arr, arr2))
print("Power:", np.power(arr, 2))
print("Mod:", np.mod(arr, 3))

# Trigonometry
print("sin(pi/2):", np.sin(np.pi / 2))
print("cos(0):", np.cos(0))
print("tan(pi/4):", np.tan(np.pi / 4))
print("arcsin(1):", np.arcsin(1))
print("arccos(0):", np.arccos(0))
print("arctan(1):", np.arctan(1))
print("arctan2(1, 1):", np.arctan2(1, 1))
print("hypot(3, 4):", np.hypot(3, 4))
print("degrees(pi):", np.degrees(np.pi))
print("radians(180):", np.radians(180))

# Exponentials & logs
print("exp(1):", np.exp(1))
print("expm1(1e-5):", np.expm1(1e-5))
print("log(e):", np.log(np.e))
print("log2(8):", np.log2(8))
print("log10(1000):", np.log10(1000))
print("log1p(1e-5):", np.log1p(1e-5))

# Absolute, rounding
print("abs(-5):", np.abs(-5))
print("sign(-3):", np.sign(-3))
print("round(3.1415):", np.round(3.1415))
print("floor(3.9):", np.floor(3.9))
print("ceil(3.1):", np.ceil(3.1))
print("trunc(3.8):", np.trunc(3.8))

# Aggregates
print("sum:", np.sum(arr))
print("prod:", np.prod(arr))
print("mean:", np.mean(arr))
print("std:", np.std(arr))
print("var:", np.var(arr))
print("max:", np.max(arr))
print("min:", np.min(arr))

# Comparisons
print("isfinite([1, np.inf]):", np.isfinite([1, np.inf]))
print("isinf([1, np.inf]):", np.isinf([1, np.inf]))
print("isnan([1, np.nan]):", np.isnan([1, np.nan]))
print("isclose(1.0, 1.00001):", np.isclose(1.0, 1.00001))
print("equal([1, 2], [1, 3]):", np.equal([1, 2], [1, 3]))

# Constants
print("pi:", np.pi)
print("e:", np.e)
print("inf:", np.inf)
print("nan:", np.nan)
Enter fullscreen mode Exit fullscreen mode

NumPy offers a rich set of fast, vectorized math functions that go far beyond Python’s built-ins. Whether you're handling basic arithmetic, advanced trigonometry, or high-performance numerical computations, NumPy is an essential tool.

Keep this cheat sheet handy as a quick reference to power up your data science, machine learning, or scientific computing projects!

Top comments (0)